Adjustable Wrench

Introduction:

This lesson will focus on using the Style Spline tool, Helix and Spiral command and the Rack Pinion mate in assemblies to model an adjustable wrench.

https://www.youtube.com/watch?v=7Qn6oOAAsow

Learning Intentions:

This participants will be able to:

- Utilise the style spline tool to full define the spline outline of the wrench head.
- Create a helical screw thread using the helix / spiral and swept boss/base commands.
- Understand how to mate mechanical parts using the distance mate and rack pinion mate commands.

Prerequisite knowledge:

To complete this exercise you should have a working knowledge of SolidWorks 2009 and a previous knowledge of the following commands are required in this lesson: sketching (spline, dimensioning), Extruded Boss/Base, Extrude Cut, Fillet, Adding Appearances.

1 http://autonixservice.ro/service
Wrench Handle

Handle outline

Create a sketch on the Top Plane and sketch the below sketch for the wrench handle outline.

Select **Style Spline** sketch tool and draw the style Spline shown using 3 points.

Add a **horizontal** property to the **inference line** of the spline and dimension the vertex as shown.

Create the **style spline** shown to complete the head of the wrench.
Add the properties and dimensions shown to the style spline inference line and vertices.

Draw a concentric circle at the end of the handle.

Sketch the square shown using the 3 point corner rectangle tool.

Add the parallel properties and dimensions shown.
Extrude Mid-Plane **10mm.**

Remove hole

Sketch the circle shown on the inner surface of the adjustment position.

Extrude cut in direction 1 - **5mm** and direction 2 **Through All.**

Slider Slot

Create a sketch on the inner surface of the wrench jaw.

Sketch the slot design shown.
Extrude Cut the slot design **Through All** in both directions.

Complete the slot for the wrench jaw by creating a sketch on the inner surface.

Create the triangular sketch show.

Extrude Cut this sketch to the same width as the slot – **5mm**.

Handle Design

Sketch the design onto the top surface of the wrench

Extrude Cut 2mm.

Mirror the design cut in the **Top Plane**.
Add the **text** shown to the handle

Extrude the text **0.5mm**

Fillets

Add **1mm** fillet

Add **0.5mm** fillet to inner edges of handle

Materials and Appearances

Apply **Tool Steel** as the material

Apply a **Chromium Plate** as the appearance to the part.
Wrench Jaw

Jaw Outline

Create the sketch over on the Top Plane

Extrude the sketch Mid-Plane 10mm.

Slider Mechanism

Sketch the outline of the wrench slider mechanism on the Top Plane.

Extrude 5mm Mid-Plane

Sketch a circle on the Front Plane
Extrude: Direction 1 - 28mm and
Direction 2 – 18mm

Sketch the thread cut onto the Right Plane

Linear Sketch Pattern
to complete the thread cut out.
Spacing 5mm

Extrude Cut using the below parameters.
Sketch on the front surface of the cylinder. **Convert Entities** to create the sketch shown.

Remove the front thread.

Apply Fillets

- **3mm** Fillet on front edge
- **0.25mm** Fillet
- **2mm** Fillet
- **0.25mm** Fillet

Materials and Appearances

Apply **Tool Steel** as the material

Apply a **Chromium Plate** as
Adjustable Wrench SW 2015 Design & Communication Graphics Page 10

the appearance to the part.

Worm Screw

Worm screw body
Create the sketch over on the **Front Plane**

Extrude the sketch **Mid-Plane 25mm**.

Screw Thread
Convert Entities on the outer front edge of the body.

Create a **Helix** about this circle using these parameters.

Create a sketch on the **Top Plane** for the thread profile. The helix start position is on the Top Plane.
Sketch a square on the Top Plane with a side of **3mm**. Create a coincident property between the Midpoint of one side and the Helix.

Select the **Swept Boss/Base** command. Using the square as **Profile** and the helix as the **Path**.

Add a **0.75mm** chamfer to the outer edges of the screw thread.

Trim off the excess thread on either end of the worm screw.

Materials and Appearances

Apply **Tool Steel** as the material
Apply a Chromium Plate as the appearance to the part.
Dowel

Extrude Boss/Base

Create the sketch over on the **Front Plane**

Extrude the circle **35mm**.

Add a **0.5mm** chamfer to either end of the dowel.

Materials and Appearances

Apply **Tool Steel** as the material

Apply a **Chromium Plate** as the appearance to the part.
Assembly the Adjustable Wrench

Insert the adjustable wrench parts into a new Assembly.

Mate the Dowel

Add a concentric mate between the dowel and the hole.

Coincident Mate between end of dowel and top of the hole.

Mate the Worm Screw

Concentric mate between dowel and worm screw.
Mate the Jaw
Concentric mate between jaw and handle.

Coincident mate to place worm screw in position.

Mate the screw thread
Add a tangent mate between the inner surface of the screw thread helix and the side of the rack (choose the inner surface on the top slot of the rack).

Note: The rack and pinion mechanism can now function in the solidworks assembly but the fully closed and fully opened positions must be established.
Create the fully open position for the jaw. Mate the end vertex of the screw thread.

Mate this vertex to the outer surface of the cylindrical rack. Thereby, the screw thread will stop once it meets the outer cylindrical surface.

Use the Measure Tool to measure the distance between the wrench jaws in the fully open position.

Distance = 35.72mm

Suppress the 2 previous mates in the Mates folder.

Note: The previous mates were used to establish the open position.
Distance Mate

Add a **distance** mate between the wrench jaws using the below parameters.

![Distance Mate](image)

Rack Pinion Mate

Create a rack pinion mate between the screw and rack using the below parameters.

![Rack Pinion Mate](image)

Note: The screw thread can now be turned to adjust the wrench jaws.
Complete